a1k0n.net

This is a version of donut.c which requires no memory, no floating point, no sines/cosines, no square roots, no divisions, and not even a multiplier (although if one is available it's a lot simpler), intended to be used in minimal FPGA or other hardware designs.

By lowering the number of CORDIC iterations performed in the inner loop, you can make the donut look faceted (though it can introduce larger rendering errors), discovered by Bruno Levy.

8
8

#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <math.h>

#define USE_MULTIPLIER 1

// torus radii and distance from camera
// these are pretty baked-in to other constants now, so it probably won't work
// if you change them too much.
const int dz = 5, r1 = 1, r2 = 2;

// HAKMEM 149 - Minsky circle algorithm
// Rotates around a point "near" the origin, without losing magnitude
// over long periods of time, as long as there are enough bits of precision in x
// and y. I use 14 bits here. Cheap way to compute approximate sines/cosines.
#define R(s,x,y) x-=(y>>s); y+=(x>>s)

// CORDIC algorithm to find magnitude of |x,y| by rotating the x,y vector onto
// the x axis. This also brings vector (x2,y2) along for the ride, and writes
// back to x2 -- this is used to rotate the lighting vector from the normal of
// the torus surface towards the camera, and thus determine the lighting amount.
// We only need to keep one of the two lighting normal coordinates.
int length_cordic(int16_t x, int16_t y, int16_t *x2_, int16_t y2) {
  int x2 = *x2_;
  if (x < 0) { // start in right half-plane
    x = -x;
    x2 = -x2;
  }
  for (int i = 0; i < 8; i++) {
    int t = x;
    int t2 = x2;
    if (y < 0) {
      x -= y >> i;
      y += t >> i;
      x2 -= y2 >> i;
      y2 += t2 >> i;
    } else {
      x += y >> i;
      y -= t >> i;
      x2 += y2 >> i;
      y2 -= t2 >> i;
    }
  }
  // divide by 0.625 as a cheap approximation to the 0.607 scaling factor factor
  // introduced by this algorithm (see https://en.wikipedia.org/wiki/CORDIC)
  *x2_ = (x2 >> 1) + (x2 >> 3);
  return (x >> 1) + (x >> 3);
}

void main() {
  // high-precision rotation directions, sines and cosines and their products
  int16_t sB = 0, cB = 16384;
  int16_t sA = 11583, cA = 11583;
  int16_t sAsB = 0, cAsB = 0;
  int16_t sAcB = 11583, cAcB = 11583;

  for (;;) {
    // yes this is a multiply but dz is 5 so it's (sb + (sb<<2)) >> 6 effectively
    int p0x = dz * sB >> 6;
    int p0y = dz * sAcB >> 6;
    int p0z = -dz * cAcB >> 6;

    const int r1i = r1*256;
    const int r2i = r2*256;

    int niters = 0;
    int nnormals = 0;
    int16_t yincC = (cA >> 6) + (cA >> 5);      // 12*cA >> 8;
    int16_t yincS = (sA >> 6) + (sA >> 5);      // 12*sA >> 8;
    int16_t xincX = (cB >> 7) + (cB >> 6);      // 6*cB >> 8;
    int16_t xincY = (sAsB >> 7) + (sAsB >> 6);  // 6*sAsB >> 8;
    int16_t xincZ = (cAsB >> 7) + (cAsB >> 6);  // 6*cAsB >> 8;
    int16_t ycA = -((cA >> 1) + (cA >> 4));     // -12 * yinc1 = -9*cA >> 4;
    int16_t ysA = -((sA >> 1) + (sA >> 4));     // -12 * yinc2 = -9*sA >> 4;
    for (int j = 0; j < 23; j++, ycA += yincC, ysA += yincS) {
      int xsAsB = (sAsB >> 4) - sAsB;  // -40*xincY
      int xcAsB = (cAsB >> 4) - cAsB;  // -40*xincZ;

      int16_t vxi14 = (cB >> 4) - cB - sB; // -40*xincX - sB;
      int16_t vyi14 = ycA - xsAsB - sAcB;
      int16_t vzi14 = ysA + xcAsB + cAcB;

      for (int i = 0; i < 79; i++, vxi14 += xincX, vyi14 -= xincY, vzi14 += xincZ) {
        int t = 512; // (256 * dz) - r2i - r1i;

        int16_t px = p0x + (vxi14 >> 5); // assuming t = 512, t*vxi>>8 == vxi<<1
        int16_t py = p0y + (vyi14 >> 5);
        int16_t pz = p0z + (vzi14 >> 5);
        int16_t lx0 = sB >> 2;
        int16_t ly0 = sAcB - cA >> 2;
        int16_t lz0 = -cAcB - sA >> 2;
        for (;;) {
          int t0, t1, t2, d;
          int16_t lx = lx0, ly = ly0, lz = lz0;
          t0 = length_cordic(px, py, &lx, ly);
          t1 = t0 - r2i;
          t2 = length_cordic(pz, t1, &lz, lx);
          d = t2 - r1i;
          t += d;

          if (t > 8*256) {
            putchar(' ');
            break;
          } else if (d < 2) {
            int N = lz >> 9;
            putchar(".,-~:;!*=#$@"[N > 0 ? N < 12 ? N : 11 : 0]);
            nnormals++;
            break;
          }

#ifdef USE_MULTIPLIER
            px += d*vxi14 >> 14;
            py += d*vyi14 >> 14;
            pz += d*vzi14 >> 14;
#else
          {
            // 11x1.14 fixed point 3x parallel multiply
            // only 16 bit registers needed; starts from highest bit to lowest
            // d is about 2..1100, so 11 bits are sufficient
            int16_t dx = 0, dy = 0, dz = 0;
            int16_t a = vxi14, b = vyi14, c = vzi14;
            while (d) {
              if (d&1024) {
                dx += a;
                dy += b;
                dz += c;
              }
              d = (d&1023) << 1;
              a >>= 1;
              b >>= 1;
              c >>= 1;
            }
            // we already shifted down 10 bits, so get the last four
            px += dx >> 4;
            py += dy >> 4;
            pz += dz >> 4;
          }
#endif

          niters++;
        }
      }
      puts("");
    }
    printf("%d iterations %d lit pixels\x1b[K", niters, nnormals);
    fflush(stdout);

    // rotate sines, cosines, and products thereof
    // this animates the torus rotation about two axes
    R(5, cA, sA);
    R(5, cAsB, sAsB);
    R(5, cAcB, sAcB);
    R(6, cB, sB);
    R(6, cAcB, cAsB);
    R(6, sAcB, sAsB);

    usleep(15000);
    printf("\r\x1b[23A");
  }
}